BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon272 Learners

Last updated on November 13, 2025

Fibonacci Series

Professor Greenline Explaining Math Concepts

The Fibonacci sequence is a pattern of numbers, where each number is the sum of the two before it. It begins with 0 and 1. But the fun part is that you can actually spot this sequence in nature! Look closely at the petals of a flower or the spiral of a shell. They often follow this amazing pattern. In this lesson, we’ll dive deeper to discover how the Fibonacci sequence connects math with the wonders of the world around us!

Professor Greenline from BrightChamps

What is the Fibonacci Sequence?

This set of numbers follows a specific pattern, where each number is obtained by adding the two numbers before it. This sequence goes like 0, 1, 1, 2, 3, 5, 8, and so on.
 

The formula we use for the Fibonacci sequence is \(F(n) = F(n-1) + F(n-2)\) (where n is greater than 1). For example, the number 5 in the sequence is obtained by adding the terms 3 and 2 (applicable for every term).
 

Outside mathematics, the Fibonacci sequence appears in nature, design, and art. It can be observed in the branching patterns and the arrangement of their leaves.

 


History of the Fibonacci Sequence

The Fibonacci sequence is one of the revolutionary discoveries of an Italian mathematician, Leonardo Fibonacci. He wrote a book named Liber Abaci, which introduced numerous important concepts like the Fibonacci sequence, the Hindu-Arabic numeral system, and the decimal system.

Although it is said that this sequence originated years ago in Indian literature. Today, the Fibonacci sequence can be observed everywhere around us. Fibonacci patterns led to the development of a variety of designs and patterns. It has also been used in algorithms for searching and sorting tasks known as Fibonacci search.

 

 

Professor Greenline from BrightChamps

Fibonacci Sequence Formula

The Fibonacci sequence formula helps us find any term in the Fibonacci series without listing all the numbers. It’s based on a simple rule, each term is the sum of the two terms before it.

If we start with
F₀ = 0 and F₁ = 1,
Then, each following term can be calculated using the recursive formula:

\(Fn = Fn-1 + Fn-2\), where n > 1.

This means:

  • The 2nd term is found by adding the 1st and 0th terms.
  • The 3rd term is found by adding the 2nd and 1st terms, and so on.
     

Let us look at an example: 
F₀ = 0, F₁ = 1
F₂ = 1 (0 + 1)
F₃ = 2 (1 + 1)
F₄ = 3 (1 + 2)
F₅ = 5 (2 + 3)

Hence, the Fibonacci sequence goes:
0, 1, 1, 2, 3, 5, 8, 13, 21, …

 

Professor Greenline from BrightChamps

Properties of the Fibonacci Sequence

The Fibonacci numbers are unique and have special characteristics you might not know. Let’s explore these:

 

Recursive property: Each number in the sequence is the result of adding up the two preceding numbers. 
Example: 0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, and so on. 


Golden ratio property: The ratio of any number to its preceding number approaches the golden ratio as the numbers get larger.  

   
Divisibility property:  
   

  • For every 3rd Fibonacci number, it will be a multiple of 2. For example, 2, 8, 34, 144, etc. 
  • For every 4th Fibonacci number, it will be a multiple of 3. For example, 3, 21, 144, etc. 
  • For every 5th Fibonacci number, it will be a multiple of 5. For example, 5, 55, 610, etc. 
  • For every 6th Fibonacci number, it will be a multiple of 8. For example, 8, 144, 610, 2584, 10946, etc. 

     

Sum of consecutive terms: The sum of any three consecutive Fibonacci numbers, when divided by 2, equals the third number. 
Example: \( 2+3+5=10\) and \(\frac{10}{2}=5\)


Difference of the products: For any four consecutive numbers, the difference of the product of the outermost numbers and the inner numbers equals 1. 
Example: 1,2,3, and 5. 
1 × 5 = 5 (outermost numbers), 2 × 3 = 6 (innermost numbers). 
6 - 5 = 1.

Explore Our Programs

Grade 1
arrow-left
arrow-right
Professor Greenline from BrightChamps

Fibonacci Series Spiral

The Fibonacci series spiral is a logarithmic spiral created by connecting the corners of squares whose side lengths follow the Fibonacci sequence. Each new square fits perfectly with the previous one, forming a smooth spiral that expands outward. This spiral pattern can be traced in many natural objects, such as sunflower seeds, snail shells, and the structures of hurricanes and spiral galaxies. The Fibonacci spiral captures how growth in nature often follows a balanced and proportional pattern.


Mathematically, this spiral is linked to the Golden Ratio (≈1.618), a unique number that represents perfect proportion and harmony. When a Fibonacci spiral is drawn inside a rectangle whose sides follow this ratio, it forms what is known as a golden rectangle, admired for its symmetry and natural beauty in both art and architecture.

Professor Greenline from BrightChamps

Golden Ratio and Fibonacci Sequence

Mathematically, this spiral is linked to the Golden Ratio (≈1.618), a unique number that represents perfect proportion and harmony. When a Fibonacci spiral is drawn inside a rectangle whose sides follow this ratio, it forms what is known as a golden rectangle, admired for its symmetry and natural beauty in both art and architecture.


In mathematics, the Fibonacci series and the Golden Ratio share a close and fascinating connection. The Fibonacci sequence is: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, … The relationship between them can be expressed by the formula:

\(Fn = \frac{(Φn - (1-Φ)n)}{√5}\),

where φ (phi) ≈ 1.618 represents the Golden Ratio.
 

The Golden Ratio can also be defined as the limit of the ratio between two consecutive Fibonacci numbers:
\(\phi = \lim_{n \to \infty} \frac{F_{n+1}}{F_n}\).

In simple terms, when you divide a Fibonacci number by the one before it, the result gets closer and closer to 1.618 as the numbers grow larger.

For example, 13 ÷ 8 = 1.625, 21 ÷ 13 = 1.615, 34 ÷ 21 = 1.619. As you can see, the ratio gradually approaches φ (1.618). It shows how the Fibonacci series naturally leads to the Golden Ratio.

Professor Greenline from BrightChamps

Fibonacci Series and Pascal's Triangle

An interesting way to find Fibonacci numbers is by using Pascal’s Triangle. In mathematics, Pascal’s Triangle is a triangular arrangement of binomial coefficients, where each number is the sum of the two numbers directly above it.

What’s fascinating is that Fibonacci numbers can be derived from this triangle by adding the numbers along its diagonals. If you start from the edge and move along the slanting diagonals, the sums of these diagonals form the Fibonacci sequence!

Professor Greenline from BrightChamps

How to Calculate Fibonacci Numbers

Fibonacci numbers vary in different types. These numbers follow a similar sequence, but the patterns may differ. Let’s learn the different ways to calculate the Fibonacci numbers. 


Recursive Relation Method: The sum of the two preceding numbers in the Fibonacci sequence. The formula for this is F(n) = F(n - 1) + F(n - 2). 
Finding 7th Fibonacci numbers
F(7) = F(6) + F(5)
= 8 + 5 = 13.
 

Golden Ratio Method: The Golden Ratio and the Fibonacci sequence are closely related. The symbol denotes it ɸ. The equation to find the Golden ratio is . 
 


Binet’s Formula (Closed-Form Expression):  To find the Fibonacci sequence using Binet’s formula, we use the formula F(n) = ɸn - (1 -ɸ )n / √5. Here, ɸ is the golden ratio, and n is the nth term of the Fibonacci sequence. 
 


Matrix Exponentiation: The Fibonacci sequence is the sum of the previous two Fibonacci numbers. Using a matrix makes it easy to calculate the sequence. The equation to find the nth Fibonacci number is 
 

Professor Greenline from BrightChamps

Importance of the Fibonacci Sequence in Mathematics

We have now learned the applications of the Fibonacci sequence in various sectors. This set of numbers has tremendous importance in mathematics due to its special properties. The sequence frequently reveals a variety of mathematical patterns like the golden ratio and can be observed in geometry. Moreover, we can also use these numbers in problem-solving related to network structures.
 

Professor Greenline from BrightChamps

Tips and Tricks to Understand the Fibonacci Sequence

Mastering the Fibonacci sequence is an important skill, but it can be a difficult task for students. We will now discuss a few tips and tricks to help you learn it easily:

 

  • Students should recall that in the Fibonacci sequence, each number is the sum of the two numbers before it.

 

  • Children can visualize the Fibonacci pattern in their daily lives to make it easier to understand. For example, think of the spirals in the seeds of sunflowers.

 

  • They can practice learning the sequence using finger calculations and mental math, or can learn by using Fibonacci sequence calculator.

 

  • Do not skip steps while solving problems related to the Fibonacci sequence.

     
  • Teachers and parents can show children real-life examples of Fibonacci patterns, like the spirals in pine cones, shells, or sunflower heads. This helps them see the sequence as more than just numbers.

     
  • Teachers and parents can help students create Fibonacci spirals using blocks, beads, or paper squares. Hands-on activities make the pattern easier to grasp.

     
  • Let students identify Fibonacci patterns in art, architecture, or nature around them. Turn it into a discovery activity or a classroom project.

     
  • Connect Fibonacci concepts with science (plant growth), art (design symmetry), and coding (patterns in algorithms).

     
  • Parents and teachers can challenge students to predict the next number in the sequence or find Fibonacci numbers in Pascal’s Triangle.
Max Pointing Out Common Math Mistakes

Common Mistakes and How to Avoid Them in the Fibonacci Sequence

The Fibonacci sequence helps children learn number patterns. However, students find it a little tricky and make mistakes while solving it. We will now mention a few common mistakes and the ways to avoid them:

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not Understanding the Sequence
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

They should understand the pattern that it goes like 0, 1, 1, 2, 3, 5, 8, and so on.
 

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Confusing Fibonacci sequences with Golden Ratio:
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Children should remember that successive Fibonacci numbers are related to the golden ratio but are not the same.
 

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Errors in Calculations
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Make sure to check for any errors by summing up the last two numbers. It should be written: 0, 1, 1, 2, 3, 5, 8…

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Skipping Terms
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Do not skip any numbers because skipping numbers can break the Fibonacci sequence. Ensure that you add up the correct pair of terms.
 

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Universalizing its applications
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Children should identify the unique pattern of the sequence and also its exceptions. 
 

arrow-left
arrow-right
Professor Greenline from BrightChamps

Real-World Applications of the Fibonacci Sequence

The Fibonacci sequence has paramount importance in different sectors. Understanding its real-world applications can help them understand the different number patterns around them.

 

  • In Nature and biology: The Fibonacci sequence is widely present in various forms in nature like petal arrangements, plant growth and shapes. It can be observed in the specific number of petals on many flowers (e.g., 3, 5, 8, 13, etc.). The patterns appear in the branching of trees and the arrangement of leaves on a stem are in Fibonacci sequence. Also, this sequence is key to the spiral arrangement of seeds in a sunflower and the spirals seen in pine cones, hurricanes, and shells. 

     
  • In art, architecture, and design: The Fibonacci sequence and its related concept, the Golden Ratio ($\phi$), have been a source of inspiration for numerous patterns in art and design. The Golden Ratio is a crucial concept used to design important architectural structures due to its visually pleasing proportions. The sequence and the Golden Ratio can be observed in famous artworks. For example, Da Vinci's Vitruvian Man showcases Golden Ratio proportions.

     
  • In finance and technology: The sequence also has technical applications in modern sectors. The sequence is utilized in finance to analyze markets like the stock market. Traders use Fibonacci numbers to determine possible rates of support and resistance. Fibonacci numbers are used in computer programs to improve efficiency in algorithms for sorting and searching tasks.
Max from BrightChamps Saying "Hey"
Hey!

Solved Examples on Fibonacci Sequence

Ray, the Character from BrightChamps Explaining Math Concepts
Max, the Girl Character from BrightChamps

Problem 1

What will be the 6th term in the Fibonacci Sequence?

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

0, 1, 1, 2, 3, 5


So we get 5 as the 6th number.
 

Explanation

We get the 6th term as 5 by adding the 4th and 5th terms.
 

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 2

Find the total number of rabbits produced by a pair of rabbits after 5 months if they give birth to a new pair of rabbits every month.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Assume 1 pair of rabbits: Month 1


2 pairs of rabbits: Month 2


3 pairs of rabbits: Month 3


5 pairs of rabbits: Month 4


8 pairs of rabbits: Month 5


Therefore, the number of rabbits produced by a pair of rabbits after 5 months is 8 pairs.

Explanation

Here, each number follows the Fibonacci sequence, which gives us the total number of rabbit pairs produced each month.
 

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 3

Find the first five numbers in the Fibonacci Sequence.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The first five numbers in the Fibonacci sequence are 0, 1, 1, 2, and 3.


To get the first five numbers, we add up the two terms that come before each term (start with 0 and 1).


0 + 1 = 1
1 + 1 = 2
1 + 2 = 3


Therefore, the first five numbers we get are 0, 1, 1, 2, and 3.

Explanation

To find the first five numbers in the sequence, one should know the correct definition of the Fibonacci sequence.
 

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 4

What is the number that comes after 5 if the sequence follows the Fibonacci Sequence?

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The Fibonacci sequence goes like: 0, 1, 1, 2, 3, 5,...


To find the next number after 5, add up 5 and 3, which is equal to 8.
 

Explanation

To get the number after 5, we just need to add the last two numbers, which gives us 8.
 

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 5

What can be the number that follows if the last two numbers in the Fibonacci sequence are 144 and 233?

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The last numbers can be added to find the next number, which is equal to 377.
(144 + 233 = 377)
 

Explanation

We can find the next number just by adding the given numbers.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Ray Thinking Deeply About Math Problems

FAQs on Fibonacci Sequence

1.What is the Fibonacci sequence?

The set of numbers, where each term is obtained by adding the two numbers that come before it.
 

Math FAQ Answers Dropdown Arrow

2.Give the sequence that the Fibonacci numbers follow.

The sequence of the Fibonacci numbers goes like this: 0, 1, 1, 2, 3, 5, 8, and so on.
 

Math FAQ Answers Dropdown Arrow

3.What is the Fibonacci sequence formula?

Yes, the formula we use is F(n) = F(n-1) + F(n-2), where n >1
 

Math FAQ Answers Dropdown Arrow

4.Give any examples of Fibonacci sequence in real life?

Fibonacci sequences are used in various fields. In arts, the unique pattern of the sequence is used in designing aesthetically pleasing structures.
 

Math FAQ Answers Dropdown Arrow

5.Are the Fibonacci sequence and the Golden Ratio the same?

No, they are closely related concepts but not the same. The ratio of two successive Fibonacci numbers gives us a value closer to the golden ratio (1.618).


For example: 34/ 21 ≈  1.619 
 

Math FAQ Answers Dropdown Arrow

6.Is it possible to find Fibonacci numbers without using any formulas?

Yes, it is possible. Start with 0 and 1, then continue the sequence by adding the two numbers that precede each term.

Math FAQ Answers Dropdown Arrow

7.How can the Fibonacci sequence be used in design or art?

The Fibonacci patterns can help artists in creating unique designs by applying the Golden Ratio. For example: Parthenon in Greece.
 

Math FAQ Answers Dropdown Arrow

8.In what forms are Fibonacci numbers present in nature?

The Fibonacci numbers can be observed in the patterns of how the petals of specific flowers and the branches of a tree are arranged. For example: The spirals of sunflower.
 

Math FAQ Answers Dropdown Arrow

9.How does the Fibonacci sequence help in music composition?

The Fibonacci sequence can be used in calculating the timing and the arrangement of themes in any piece of music.

Math FAQ Answers Dropdown Arrow

10.What are the first 20 numbers in the Fibonacci Sequence?

The first 20 numbers in the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181.
 

Math FAQ Answers Dropdown Arrow
Math Teacher Background Image
Math Teacher Image

Hiralee Lalitkumar Makwana

About the Author

Hiralee Lalitkumar Makwana has almost two years of teaching experience. She is a number ninja as she loves numbers. Her interest in numbers can be seen in the way she cracks math puzzles and hidden patterns.

Max, the Girl Character from BrightChamps

Fun Fact

: She loves to read number jokes and games.

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom