BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon1263 Learners

Last updated on November 26, 2025

Paired T-Test

Professor Greenline Explaining Math Concepts

A Paired T-Test is a type of statistical hypothesis test where the test is conducted to compare the average values or means of two related sets of observations. These observations are conducted randomly to ensure that any difference in results is due to the test itself and not other factors.

Professor Greenline from BrightChamps

What is a Paired T-Test?

A paired t-test is a statistical test used to determine whether there is a meaningful difference between two related measurements. It is commonly used when the same group of people or items is measured twice, such as before and after a treatment, or when two samples are closely matched. The test compares each pair of values and determines whether their difference is significantly different from zero. It also assumes that these differences come from the random sample and follow an approximately normal distribution.

For example:

Imagine you want to check if drinking an energy drink helps people run faster.

You take the same five people and record how fast they run:

  • Before drinking the energy drink
     
  • After drinking the energy drink


Since the same people are tested twice, the scores are paired. If most people run faster after drinking the energy drink, the paired t-test will show whether this improvement is real or just a chance effect.

 

Professor Greenline from BrightChamps

Assumptions of the Paired T-Test


Before using a paired t-test, several conditions must be met to ensure the results are trustworthy. These assumptions help confirm that the data is appropriate for comparing two related measurements.
 

  • The differences between each pair, of the second value minus the first value, should roughly follow a standard, bell-shaped distribution.
     
  • Each pair of observations should be independent of the others. One participant’s results must not affect anyone else’s results.
     
  • The variable being measured should be continuous, for example, height, weight, time, temperature, or test scores.
     
  • The two sets of data must come from the same individuals measured twice, or from matched subjects that are closely related in a meaningful way.
Professor Greenline from BrightChamps

Difference Between Paired T-test and Unpaired T-test

Both paired and unpaired (independent) t-test are both statistical tests used to compare the means of two groups, but they are used in different situations. Let’s understand them in detail.

 

Features Paired t-test Unpaired t-test
Meaning     Compares the means of two related measurements taken from the same people or any item. It is also known as a dependent t-test. Compares the means of two separate and unrelated groups. It is also known as an independent t-test.
Hypotheses H₀: No difference between the two related means.
H₁: A significant difference exists between the two related means.
H₀: No difference between the two independent group means.
H₁: A significant difference exists between the means of the two groups.
Variance Condition Does not require equal variance. Assumes equal variance between the two groups. If the variance differs, Welch’s t-test is used.
When to Use When the same group is tested twice (e.g., before and after). When comparing the means of two different groups.
Example Scenarios Checking the effect of a drug on the same patients before and after treatment.

Comparing scores of students on two different tests taken by the same group.

Comparing drug effectiveness between two separate groups (treatment vs control).

Comparing glucose levels between men and women.

 

Explore Our Programs

Grade 1
arrow-left
arrow-right
Professor Greenline from BrightChamps

Paired T-Test Table

The paired t-test table helps to determine the t-value into a statement that shows whether the results are statistically significant. The following table is provided:

 

Two-Tailed Significance            
Degrees of Freedom (n-1) α = 0.20 0.10

0.05

0.02 0.01

0.002

1

3.078

6.314

12.706

31.821

63.657

318.3
2

1.886

2.92

4.303

6.965

9.925

22.327

3

1.638

2.353

3.182

4.541

5.841

10.214

4

1.533

2.132

2.776

3.747

4.604

7.173

5

1.476

2.015

2.571

3.305

4.032

5.893

6

1.44

1.943

2.447

3.143

3.707

5.208

7

1.415

1.895

2.365

2.998

3.499

4.785

8

1.397

1.86

2.306

2.896

3.355

4.501
9

1.383

1.833

2.262

2.821

3.25

4.297

10

1.372

1.812

2.228

2.764

3.169

4.144

11

1.363

1.796

2.201

2.718

3.106

4.025

12

1.356

1.782

2.179

2.681

3.055

3.93

13

1.35

1.771

2.16

2.65

3.012

3.852

14

1.345

1.761

2.145

2.624

2.977

3.787

15

1.341

1.753

2.131

2.602

2.947

3.733

 

Professor Greenline from BrightChamps

How to Find the Paired T-Test

When you have two related datasets, X and Y, where each value in X corresponds to a value in Y (x₁ with y₁, x₂ with y₂, …, xₙ with yₙ), follow these steps to carry out a paired t-test:
 

  • State the null hypothesis (H₀):
    There is no difference between the means of the two related groups. In other words, the average difference is zero.
     
  • Calculate the difference for each pair:
    For every pair, find the difference:
    dᵢ = yᵢ – xᵢ
     
  • Find the mean of the differences:
    Compute the average of all the dᵢ values.
     
  • Compute the standard error:
    Use the formula:

    Standard Error = \( \frac{SD}{\sqrt{n}} \)

    Where SD is the standard deviation of the differences and n is the number of pairs.
     
  • Calculate the t-statistic:
    Calculate the paired t-test value by dividing the average difference by its standard error.
     
  • Compare with the t-distribution table:
    Look up the critical t-value for n – 1 degrees of freedom, then compare it with the calculated t-value to find the p-value and decide whether to reject the null hypothesis or not.
Professor Greenline from BrightChamps

How Does Paired T-Test Work?

Here are some key takeaways on how to conduct a paired t-test. In order to conduct an accurate paired t-test, it is a must to follow these rules given below:

 

  • The data you measure in a Paired T-test can be numbers that have decimals or fractions, like 12.5 or 7.8, instead of only whole numbers like 12 or 7. 
     
  • A random sample of data should be collected, meaning that the observations must be independent and not influenced by any external factors.
     
  • Every sample or group must have the same subject. Only related samples or groups can use the paired t-test. 
     
  • The dependent variable data in a paired t-test should not have deviations or outliers (like the values that are very different from rest of the data).
     
  • There should be an approximate distribution of the dependent variable.

 

After analyzing the rules of this test, using a formula, you can find the difference between the means of the two tests conducted. The formula of the paired t-test is given below:


t = d/sd/n

 

Where, 

 

d = Mean of the difference between paired values.

 

sd = Standard deviation of the differences

 

n = Number of pairs


Steps to Use this Formula:

 

Step 1: Find the difference (d) between each pair of values.

 

Step 2: Calculate the mean of these differences (d). 

 

Step 3: Find the standard deviation of these differences (sd).

 

Step 4: Divide sd by the square root of n.

 

Step 5: Divide d by the result from Step 4 to get the t-value.

Professor Greenline from BrightChamps

Properties of the Paired T-Test

The paired t-test is used to compare the two related measurements from the same subjects. It evaluates the differences between paired observations to determine whether a meaningful change has occurred, under the assumptions of normality, dependence, and proper sampling.
 

  • Compares two related groups: This test is applied when both datasets come from the same individuals or closely matched subjects, for example, performance measured before and after an intervention.
     
  • Focuses on the differences within pairs: It computes the difference for each matched pair and checks whether the average difference is significantly different from zero.
     
  • Data must be paired: Every value in one dataset must correspond to a specific value in the other dataset, such as test scores for the same students at two time points.
     
  • Requires continuous numerical data: The variables should be measurable quantities, such as marks, height, weight, or time, rather than categories.
     
  • Normality of differences: The distribution of the differences should be approximately normal. Minor deviations are acceptable, especially when the sample size is large.
     
  • Random selection of pairs: Pairs should be selected randomly to ensure unbiased and representative results.
     
  • Uses dependent samples: Unlike the independent t-test, this test is designed for dependent or linked samples, where the two measurements influence each other.
     
  • Sensitive to outliers: Extreme values can distort the mean difference, so it is essential to check for outliers using tools like box plots or histograms.
     
  • Supports one-tailed and two-tailed tests: Depending on the hypothesis, you can test for a specific direction of change or simply test for any difference.
     
  • Highly practical: The paired t-test is widely used in fields such as medicine, psychology, and education to assess changes within the same group over time.
Professor Greenline from BrightChamps

Tips and Tricks to Master Paired T-Test

Paired T-Test can be a complex topic to comprehend to understand, therefore there are a few tips and tricks mentioned below that can help us master this topic.

 

  • Understand the Purpose Clearly: The paired t-test is used to compare two related samples, usually “before and after” measurements, to see if there’s a significant difference between them.
     
  • Focus on the Differences: Always compute the difference (d = after – before) for each pair first. The analysis is based entirely on these differences, not on the raw data.

  • Pairing Carefully: Ensure that each “before” observation is correctly matched to its “after” observation. Incorrect pairing invalidates the results.
     
  • Know When to Use It: Use a paired t-test only when data is dependent — meaning the same subjects or items are measured twice (e.g., test scores before and after training).
     
  • Verify Normality of Differences: The differences between paired observations should be approximately normally distributed. Use a histogram or normality test (like Shapiro–Wilk) to check this assumption.
     
  • Start With Real-Life Examples: Use simple situations, like before-and-after test scores, to show why paired data matters and when to apply the paired test formula correctly.
     
  • Teach Step-by-Step Instead of All at Once: Break the paired t-test into clear steps, so students can efficiently compute differences, means, standard deviations, t-values, or use paired t-test calculators confidently.
     
  • Visualize the Data: Use before-and-after charts or tables to show the value connections, helping learners understand paired tests and distinguish between unpaired and paired t-tests.
Max Pointing Out Common Math Mistakes

Common Mistakes of Paired T-Test and How to Avoid Them

The chance of making mistakes while conducting a paired T-test is very high, as the formula is sometimes daunting for students. Here are the top five mistakes that students might make and how to avoid them.

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Using a Paired T-test for Independent Data 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

The paired T-test is only for comparing before and after results of the same subjects (e.g., same person, same group, same object). If comparing and contrasting different groups, use an independent T-test instead. 

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not Checking for Deviation

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Deviation can affect the results. Always plot the data to check for unusual values and decide whether to remove them or use a more robust test.

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Ignoring Sample Size

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

A very small sample size may not give reliable results, while a very large sample may find tiny differences that don’t matter. Use power analysis to determine the correct number of subjects.

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Using Raw Scores Instead of Differences

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

The test is based on differences between paired values, not the raw values themselves. Always calculate D = After - Before and use this difference in the test.

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Forgetting Assumptions of the Test

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Make sure your data meets the requirements like data must be continuous, the difference must be normally distributed, each pair of values must be dependent (related to the same subject).

arrow-left
arrow-right
Professor Greenline from BrightChamps

Real-Life Applications of Paired T-Test

A Paired T-test is done in situations where we can compare before and after any tests, experiments, etc. Here are some of the real-life applications of Paired T-test:
 

  • Medical Field: Scientists test a new medicine on rats, in order to find its efficiency before and after.
     
  • Education: In schools, examinations are conducted to test the progress of students in learning. 
     
  • Business and Marketing: A company tests customer’s interest before and after running a new email advertisement campaign to the existing customers.
     
  • Sports Performance Analysis: Coaches use the paired t-test to compare athletes’ performance before and after training programs. For example, checking improvements in speed, strength, or endurance after a new fitness routine.
     
  • Psychology and Behavioral Studies: Researchers apply the paired t-test to measure changes in behavior or attitude before and after a therapy session, counseling program, or motivational workshop.
Max from BrightChamps Saying "Hey"
Hey!

Solved Examples for Paired T-Test

Ray, the Character from BrightChamps Explaining Math Concepts
Max, the Girl Character from BrightChamps

Problem 1

If the p- value in a paired t-test is 0.032, and the significance level () is 0.05, what conclusion should be made?

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The null hypothesis is rejected.

Explanation

Since p-value (0.032) <  (0.05), we reject the null hypothesis, meaning there is a significant difference between the paired data.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 2

Which of the following scenarios is suitable for a paired t-test? Measuring students’ test scores before and after a new study method. Comparing test scores of two different groups of students.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

(a) Measuring student’s test scores before and after a new study method.

Explanation

A paired t-test is used when the same subjects are measured before and after an event. In (b), two separate groups are compared, which requires an independent t-test.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 3

What is the key assumption for performing a paired t-test?

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The difference between paired values should follow a normal distribution.

Explanation

The paired t-test assumes that the differences (not individual values) between paired observations should be normally distributed for valid results.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 4

Which of the following is an example of paired data? (a) The weight of 50 different newborns in a hospital. (b) The weight of 10 babies before and after a new feeding formula.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

(b) The weight of 10 babies before and after a new feeding formula.

Explanation

Paired data involves measuring the same subjects twice under different conditions, making (b) the correct choice.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Ray Thinking Deeply About Math Problems

FAQs

1.When should you use a Paired T-test?

Use a paired t-test when you have two measurements from the same subjects (e.g., individual, same group, object, or units).

Math FAQ Answers Dropdown Arrow

2.What is the null hypothesis in a Paired T-test?

The null hypothesis states that there is no significant difference between the paired observations.

Math FAQ Answers Dropdown Arrow

3.What are the assumptions of a Paired T-test?

The paired t-test has three main assumptions:

  1. The data should be continuous (measurable, like weight or height).
     
  2. The differences between paired observations should be normally distributed.
     
  3. The pairs should be randomly selected and related.

Math FAQ Answers Dropdown Arrow

4.What is the difference between a Paired T-test and an independent T-test?

A paired t-test compares the same group before and after a change, while an independent t-test compares two separate groups. 

Math FAQ Answers Dropdown Arrow

5.Can a Paired T-test be used with non-normally distributed data?

If the differences between paired observations are not normally distributed, you should use a non-parametric alternative, such as the Wilcoxon Signed-Rank Test, instead of the paired t-test.

Math FAQ Answers Dropdown Arrow

6.How can parents understand the difference between an independent vs paired t-test for their child's performance?

In an independent vs paired t-test, the independent test is compared to the two different groups, while the paired test is compared to your child's results at two different times.

Math FAQ Answers Dropdown Arrow

7.How can parents learn to perform a paired t-test on their child's marks?

To perform a paired t-test, parents compare their child's two scores, calculate the difference, and check whether the change is meaningful.

Math FAQ Answers Dropdown Arrow

8.What should parents know about a paired sample t-test when tracking their child's improvement?

A paired sample t-test is the same as a paired t-test, which helps parents accurately measure their child's progress.

 

Math FAQ Answers Dropdown Arrow

9.Do parents need any special tools or calculators to do a paired t-test for their child?

Parents don't need special tools, but using an online paired sample t-test calculator can make checking their child's progress easier.

Math FAQ Answers Dropdown Arrow
Math Teacher Background Image
Math Teacher Image

Jaipreet Kour Wazir

About the Author

Jaipreet Kour Wazir is a data wizard with over 5 years of expertise in simplifying complex data concepts. From crunching numbers to crafting insightful visualizations, she turns raw data into compelling stories. Her journey from analytics to education ref

Max, the Girl Character from BrightChamps

Fun Fact

: She compares datasets to puzzle games—the more you play with them, the clearer the picture becomes!

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom