BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon105 Learners

Last updated on September 12, 2025

Derivative of Negative Exponent

Professor Greenline Explaining Math Concepts

We use the derivative of a negative exponent function, which is a key concept in calculus, to understand how functions with negative powers change in response to slight changes in x. Derivatives are vital for calculating profit or loss and understanding rates of change in real-life situations. We will now discuss the derivative of negative exponent functions in detail.

Derivative of Negative Exponent for US Students
Professor Greenline from BrightChamps

What is the Derivative of a Negative Exponent Function?

We now understand the derivative of a function with a negative exponent. It is commonly represented as d/dx (x⁻ⁿ) or (x⁻ⁿ)', and its value is -n·x⁻ⁿ⁻¹.

 

Functions with negative exponents have clearly defined derivatives, indicating they are differentiable within their domain. The key concepts are mentioned below:

 

Power Rule: Rule for differentiating functions of the form xⁿ, applicable to x⁻ⁿ as well.

 

Negative Exponent: x⁻ⁿ = 1/xⁿ, an important identity to understand.

Professor Greenline from BrightChamps

Derivative of a Negative Exponent Formula

The derivative of x⁻ⁿ can be denoted as d/dx (x⁻ⁿ) or (x⁻ⁿ)'.

 

The formula we use to differentiate x⁻ⁿ is: d/dx (x⁻ⁿ) = -n·x⁻ⁿ⁻¹ (or) (x⁻ⁿ)' = -n·x⁻ⁿ⁻¹

 

The formula applies to all x where x ≠ 0.

Professor Greenline from BrightChamps

Proofs of the Derivative of a Negative Exponent

We can derive the derivative of x⁻ⁿ using proofs. To show this, we will use algebraic manipulation along with the rules of differentiation. There are several methods we use to prove this, such as:

 

  1. By First Principle
  2. Using Power Rule
  3. Using Negative Exponent

 

Identity We will now demonstrate that the differentiation of x⁻ⁿ results in -n·x⁻ⁿ⁻¹ using the above-mentioned methods:

 

By First Principle

 

The derivative of x⁻ⁿ can be proved using the First Principle, which expresses the derivative as the limit of the difference quotient.

 

To find the derivative of x⁻ⁿ using the first principle, we will consider f(x) = x⁻ⁿ. Its derivative can be expressed as the following limit. f'(x) = limₕ→₀ [f(x + h) - f(x)] / h … (1)

 

Given that f(x) = x⁻ⁿ, we write f(x + h) = (x + h)⁻ⁿ.

 

Substituting these into equation (1), f'(x) = limₕ→₀ [(x + h)⁻ⁿ - x⁻ⁿ] / h

 

Using binomial expansion and simplifying, f'(x) = -n·x⁻ⁿ⁻¹ Hence, proved.

 

Using Power Rule

 

To prove the differentiation of x⁻ⁿ using the power rule, We use the formula: d/dx (xⁿ) = n·xⁿ⁻¹ Set n to be negative, i.e., n = -m, d/dx (x⁻ⁿ) = -n·x⁻ⁿ⁻¹

 

Thus, the derivative of x⁻ⁿ is -n·x⁻ⁿ⁻¹.

 

Using Negative Exponent

 

Identity Consider x⁻ⁿ = 1/xⁿ Differentiate using the quotient rule, d/dx (1/xⁿ) = -n·x⁻ⁿ⁻¹

 

Hence, the derivative of x⁻ⁿ is -n·x⁻ⁿ⁻¹.

Professor Greenline from BrightChamps

Higher-Order Derivatives of Negative Exponent Functions

When a function is differentiated several times, the derivatives obtained are referred to as higher-order derivatives. Higher-order derivatives can be a bit challenging.

 

To understand them better, think of a car where the speed changes (first derivative) and the rate at which the speed changes (second derivative) also changes. Higher-order derivatives make it easier to understand functions like x⁻ⁿ.

 

For the first derivative of a function, we write f′(x), which indicates how the function changes or its slope at a certain point. The second derivative is derived from the first derivative, which is denoted using f′′(x). Similarly, the third derivative, f′′′(x), is the result of the second derivative, and this pattern continues.

 

For the nth Derivative of x⁻ⁿ, we generally use fⁿ(x) for the nth derivative of a function f(x), which tells us the change in the rate of change (continuing for higher-order derivatives).

Professor Greenline from BrightChamps

Special Cases:

When x is 0, the derivative is undefined because x⁻ⁿ involves division by zero at this point.

 

When n = 1, the derivative of x⁻¹ = -1·x⁻², which is -1/x².

Max Pointing Out Common Math Mistakes

Common Mistakes and How to Avoid Them in Derivatives of Negative Exponents

Students frequently make mistakes when differentiating functions with negative exponents. These mistakes can be resolved by understanding the proper solutions. Here are a few common mistakes and ways to solve them:

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not simplifying the expression

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students may forget to simplify the expression, which can lead to incomplete or incorrect results. They often skip steps and directly arrive at the result, especially when solving using the power rule. Ensure that each step is written in order. Students might think it is cumbersome, but it is important to avoid errors in the process.

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Forgetting the Undefined Points

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

They might not remember that x⁻ⁿ is undefined at the point x = 0. Keep in mind that you should consider the domain of the function that you differentiate. It will help you understand that the function is not continuous at such certain points.

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Incorrect use of Power Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

While differentiating functions such as x⁻ⁿ, students misapply the power rule. For example: Incorrect differentiation: d/dx (x⁻ⁿ) = nx⁻ⁿ⁻¹. The correct differentiation: d/dx (x⁻ⁿ) = -n·x⁻ⁿ⁻¹. To avoid this mistake, write the power rule correctly. Always check for errors in the calculation and ensure it is properly simplified.

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not writing Constants and Coefficients

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

There is a common mistake that students at times forget to multiply the constants placed before x⁻ⁿ. For example, they incorrectly write d/dx (5x⁻ⁿ) = x⁻ⁿ⁻¹. Students should check the constants in the terms and ensure they are multiplied properly. For example, the correct equation is d/dx (5x⁻ⁿ) = -5n·x⁻ⁿ⁻¹.

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not Applying the Chain Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students often forget to use the chain rule. This happens when the derivative of the inner function is not considered. For example: Incorrect: d/dx ((x + 1)⁻²) = -2(x + 1)⁻³. To fix this error, students should divide the functions into inner and outer parts. Then, make sure that each function is differentiated. For example, d/dx ((x + 1)⁻²) = -2(x + 1)⁻³·1.

arrow-right
Max from BrightChamps Saying "Hey"
Hey!

Examples Using the Derivative of Negative Exponents

Ray, the Character from BrightChamps Explaining Math Concepts
Max, the Girl Character from BrightChamps

Problem 1

Calculate the derivative of (x⁻² · x⁻³)

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Here, we have f(x) = x⁻² · x⁻³. Using the product rule, f'(x) = u′v + uv′ In the given equation, u = x⁻² and v = x⁻³. Let’s differentiate each term, u′ = d/dx (x⁻²) = -2x⁻³ v′ = d/dx (x⁻³) = -3x⁻⁴

 

Substituting into the given equation, f'(x) = (-2x⁻³)(x⁻³) + (x⁻²)(-3x⁻⁴)

 

Let’s simplify terms to get the final answer, f'(x) = -2x⁻⁶ - 3x⁻⁶ f'(x) = -5x⁻⁶

 

Thus, the derivative of the specified function is -5x⁻⁶.

Explanation

We find the derivative of the given function by dividing the function into two parts. The first step is finding its derivative and then combining them using the product rule to get the final result.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 2

A lamp post casts a shadow represented by the function y = x⁻¹, where y represents the length of the shadow at a distance x from the lamp post. If x = 2 meters, measure the rate of change of the shadow length.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

We have y = x⁻¹ (length of the shadow)...(1)

 

Now, we will differentiate the equation (1)

 

Take the derivative x⁻¹: dy/dx = -1·x⁻² Given x = 2 (substitute this into the derivative)

 

dy/dx = -1·2⁻² dy/dx = -1/4

 

Hence, we get the rate of change of the shadow length at a distance x = 2 as -1/4.

Explanation

We find the rate of change of the shadow length at x = 2 as -1/4, which means that at a given point, the length of the shadow decreases at a rate of 1/4 units per unit increase in distance from the lamp post.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 3

Derive the second derivative of the function y = x⁻².

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The first step is to find the first derivative, dy/dx = -2x⁻³...(1)

 

Now we will differentiate equation (1) to get the second derivative: d²y/dx² = d/dx [-2x⁻³]

 

Here we use the power rule, d²y/dx² = -2(-3)x⁻⁴ d²y/dx² = 6x⁻⁴

 

Therefore, the second derivative of the function y = x⁻² is 6x⁻⁴.

Explanation

We use the step-by-step process, where we start with the first derivative. Using the power rule, we differentiate -2x⁻³. We then simplify the terms to find the final answer.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 4

Prove: d/dx ((x⁻¹)²) = -2x⁻³.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Let’s start using the chain rule: Consider y = (x⁻¹)²

 

To differentiate, we use the chain rule: dy/dx = 2(x⁻¹)·d/dx [x⁻¹]

 

Since the derivative of x⁻¹ is -1·x⁻², dy/dx = 2(x⁻¹)(-1·x⁻²)

 

dy/dx = -2x⁻³ Hence proved.

Explanation

In this step-by-step process, we used the chain rule to differentiate the equation. Then, we replace x⁻¹ with its derivative. As a final step, we simplify to derive the equation.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 5

Solve: d/dx (x⁻²/x)

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

To differentiate the function, we use the quotient rule: d/dx (x⁻²/x) = (d/dx (x⁻²)·x - x⁻²·d/dx(x))/x²

 

We will substitute d/dx (x⁻²) = -2x⁻³ and d/dx(x) = 1 = (-2x⁻³·x - x⁻²·1)/x² = (-2x⁻² - x⁻²)/x² = -3x⁻²/x² = -3x⁻⁴

 

Therefore, d/dx (x⁻²/x) = -3x⁻⁴.

Explanation

In this process, we differentiate the given function using the quotient rule. As a final step, we simplify the equation to obtain the final result.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Ray Thinking Deeply About Math Problems

FAQs on the Derivative of Negative Exponents

1.Find the derivative of x⁻².

Using the power rule for negative exponents, d/dx (x⁻²) = -2x⁻³.

Math FAQ Answers Dropdown Arrow

2.Can we use the derivative of negative exponents in real life?

Yes, we can use the derivative of negative exponents in real life to calculate rates of change, especially in contexts involving inversely proportional relationships.

Math FAQ Answers Dropdown Arrow

3.Is it possible to take the derivative of x⁻ⁿ at the point where x = 0?

No, x = 0 is a point where x⁻ⁿ is undefined, so it is impossible to take the derivative at this point (since the function does not exist there).

Math FAQ Answers Dropdown Arrow

4.What rule is used to differentiate x⁻²/x?

We use the quotient rule to differentiate x⁻²/x, d/dx (x⁻²/x) = (-2x⁻³·x - x⁻²·1)/x² = -3x⁻⁴.

Math FAQ Answers Dropdown Arrow

5.Are the derivatives of x⁻² and x² the same?

No, they are different. The derivative of x⁻² is -2x⁻³, while the derivative of x² is 2x.

Math FAQ Answers Dropdown Arrow
Professor Greenline from BrightChamps

Important Glossaries for the Derivative of Negative Exponents

  • Derivative: The derivative of a function indicates how the given function changes in response to a slight change in x.

 

  • Negative Exponent: A term of the form x⁻ⁿ, which is equal to 1/xⁿ.

 

  • Power Rule: A basic rule in calculus used to differentiate functions of the form xⁿ.

 

  • Chain Rule: A rule used to differentiate compositions of functions.

 

  • Quotient Rule: A rule used to differentiate functions that are ratios of other functions.
Math Teacher Background Image
Math Teacher Image

Jaskaran Singh Saluja

About the Author

Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.

Max, the Girl Character from BrightChamps

Fun Fact

: He loves to play the quiz with kids through algebra to make kids love it.

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom