BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon109 Learners

Last updated on September 12, 2025

Derivative of Implicit Function

Professor Greenline Explaining Math Concepts

The derivative of an implicit function is a tool used to analyze how changes in one variable affect another in equations where the dependent and independent variables are intertwined. Derivatives are essential in various real-life applications, such as calculating rates of change in physics and economics. We will now explore the derivative of implicit functions in detail.

Derivative of Implicit Function for US Students
Professor Greenline from BrightChamps

What is the Derivative of an Implicit Function?

An implicit function is one where the dependent variable is not isolated on one side of the equation. The derivative of an implicit function is typically represented using implicit differentiation, which allows us to find the rate of change of one variable with respect to another.

 

This method is crucial for functions that cannot be easily solved for one variable in terms of another. Key concepts include: 

 

Implicit Function: A function defined by an equation where the dependent variable is not isolated. 

 

Implicit Differentiation: A method to find derivatives of implicit functions. 

 

Chain Rule: A fundamental rule used in implicit differentiation.

Professor Greenline from BrightChamps

Derivative of Implicit Function Formula

When differentiating an implicit function, the derivative is found by treating one variable as a function of another, applying the chain rule, and solving for the derivative.

 

The general process is:

 

1. Differentiate both sides of the equation with respect to the independent variable.

 

2. Apply the chain rule when differentiating terms with the dependent variable.

 

3. Solve for the derivative of the dependent variable.

Professor Greenline from BrightChamps

Proofs of the Derivative of an Implicit Function

To understand the derivative of an implicit function, we use implicit differentiation. Proofs involve differentiating each term with respect to the independent variable and solving for the derivative. Methods include: -

 

Implicit Differentiation: Differentiating each term and applying the chain rule. 

 

Solving for dy/dx: Rearranging the equation to isolate the derivative.

 

Example-

 

Proof: Consider the equation x2 + y2 = 1 (a circle).

 

1. Differentiate both sides: d/dx(x2 + y2) = d/dx(1).

 

2. Apply the chain rule: 2x + 2y(dy/dx) = 0. 3.

 

Solve for dy/dx: dy/dx = -x/y.

Professor Greenline from BrightChamps

Higher-Order Derivatives of Implicit Functions

Higher-order derivatives of implicit functions follow the same principles as the first derivative but involve additional differentiation steps.

 

For instance, the second derivative involves differentiating the first derivative, often requiring careful application of the product and chain rules.

 

Higher-order derivatives help analyze the behavior of implicit functions more deeply.

Professor Greenline from BrightChamps

Special Cases

Some implicit functions have characteristics that affect their derivatives: 

 

Vertical Tangents: Occur when the derivative is undefined due to division by zero. 

 

Points of Inflection: Where the second derivative changes sign, indicating changes in concavity.

Max Pointing Out Common Math Mistakes

Common Mistakes and How to Avoid Them in Derivatives of Implicit Functions

Errors in differentiating implicit functions often arise from misapplication of the chain rule and algebraic manipulation. Understanding the correct procedures can prevent these mistakes.

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Misapplying the Chain Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students may forget to apply the chain rule correctly when differentiating terms involving the dependent variable. This oversight can lead to incorrect differentiation results. Always carefully apply the chain rule to each term involving the dependent variable.

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Neglecting Derivative of Constants

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

When differentiating, students might ignore that constants become zero. This can lead to incorrect terms in the derivative. Remember to account for all constants when differentiating.

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Incorrectly Solving for dy/dx

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Mistakes can occur when rearranging the differentiated equation to solve for dy/dx. Ensure each step is carefully executed to avoid errors in isolating the derivative.

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Simplification Errors

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students often make algebraic mistakes when simplifying expressions after differentiating. Double-check each simplification step to ensure accuracy.

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Ignoring Higher-Order Derivatives

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Higher-order derivatives may be needed for a comprehensive analysis but are sometimes overlooked. Consider calculating these derivatives when analyzing the behavior of implicit functions.

arrow-right
Max from BrightChamps Saying "Hey"
Hey!

Examples Using the Derivative of Implicit Functions

Ray, the Character from BrightChamps Explaining Math Concepts
Max, the Girl Character from BrightChamps

Problem 1

Calculate the derivative of x²+ xy + y² = 1.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Differentiate both sides with respect to x:

 

d/dx(x2) + d/dx(xy) + d/dx(y2) = d/dx(1). 2x + (x(dy/dx) + y) + 2y(dy/dx) = 0.

 

Solve for dy/dx: (x + 2y)(dy/dx) = -2x - y. dy/dx = (-2x - y)/(x + 2y).

Explanation

We differentiate each term with respect to x, applying the chain rule to terms involving y. Solving for dy/dx gives us the rate of change of y with respect to x.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 2

A balloon is inflating such that x² + y² = r² represents its surface. If r = 5 cm and x = 3 cm, find dy/dx at that point.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Differentiate the equation with respect to x: 2x + 2y(dy/dx) = 0. Solve for dy/dx: dy/dx = -x/y. Substitute x = 3 and y = sqrt(r2 - x2) = sqrt(25 - 9) = 4. dy/dx = -3/4.

Explanation

By differentiating the circle equation, we find dy/dx = -x/y. Substituting the given values, we calculate the derivative at the specified point.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 3

Derive the second derivative of x²+ y² = 1.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

First derivative: 2x + 2y(dy/dx) = 0, dy/dx = -x/y.

 

Differentiate again: d/dx(dy/dx) = d/dx(-x/y).

 

Use quotient rule: d2y/dx2= (y - x(dy/dx))/y2.

 

Substitute dy/dx = -x/y: d2y/dx2 = (y - x(-x/y))/y2 = (y + x2/y)/y2 = (y2 + x2)/y3.

Explanation

We use implicit differentiation twice to derive the second derivative, applying the quotient rule for the second differentiation. Simplifying yields the second derivative expression.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 4

Prove: d/dx(y²) = 2y(dy/dx) for y as a function of x.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Consider y2 as an implicit function of x. Differentiate: d/dx(y2) = 2y(dy/dx). This follows directly from the chain rule, treating y as a function of x.

Explanation

Using the chain rule, we differentiate y2 with respect to x, treating y as a dependent variable. The result is straightforward.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 5

Solve: d/dx(y + xy = 3).

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Differentiate both sides: d/dx(y) + d/dx(xy) = d/dx(3). dy/dx + (x(dy/dx) + y) = 0.

 

Solve for dy/dx: dy/dx(1 + x) = -y. dy/dx = -y/(1 + x).

Explanation

By differentiating each term and rearranging, we solve for dy/dx, giving us the derivative of y with respect to x for the given implicit equation.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Ray Thinking Deeply About Math Problems

FAQs on the Derivative of Implicit Functions

1.How do you find the derivative of an implicit function?

Implicit differentiation is used by differentiating both sides of the equation with respect to the independent variable and solving for dy/dx.

Math FAQ Answers Dropdown Arrow

2.Can implicit differentiation be applied to any equation?

Yes, implicit differentiation can be applied to any equation involving two or more variables where one variable is not isolated.

Math FAQ Answers Dropdown Arrow

3.Is the derivative of an implicit function unique?

The derivative is unique for a given function, but the expression may vary depending on the form of the equation and simplifications used.

Math FAQ Answers Dropdown Arrow

4.Why is implicit differentiation important?

Implicit differentiation is essential for analyzing relationships in equations where variables are not easily separated, such as in physics and engineering.

Math FAQ Answers Dropdown Arrow

5.Can implicit differentiation handle higher-order derivatives?

Yes, implicit differentiation can be extended to higher-order derivatives by continuing the differentiation process on previous derivatives.

Math FAQ Answers Dropdown Arrow
Professor Greenline from BrightChamps

Important Glossaries for the Derivative of Implicit Functions

  • Implicit Function: A function where the dependent variable is not isolated on one side of the equation.

 

  • Implicit Differentiation: A technique to differentiate implicit functions by treating one variable as a function of another.

 

  • Chain Rule: A fundamental rule in calculus used to differentiate compositions of functions, crucial in implicit differentiation.

 

  • Quotient Rule: A rule used to differentiate ratios of functions, often used in implicit differentiation.

 

  • Vertical Tangent: A point where the derivative of the function is undefined, often due to division by zero.
Math Teacher Background Image
Math Teacher Image

Jaskaran Singh Saluja

About the Author

Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.

Max, the Girl Character from BrightChamps

Fun Fact

: He loves to play the quiz with kids through algebra to make kids love it.

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom