BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon120 Learners

Last updated on October 22, 2025

Matrix Equation

Professor Greenline Explaining Math Concepts

A matrix equation is an equation in which matrices represent the coefficients and variables, typically in the form AX = B. This article will discuss matrix equations, methods for solving them, and their applications.

Matrix Equation for US Students
Professor Greenline from BrightChamps

What is a Matrix Equation?

A matrix equation represents a system of linear equations compactly using matrices. It is of the form AX = B, where A is the matrix of coefficients, X is the column vector of unknown variables, and B is the column vector of constants.

For example, for this system of linear equations: 
2x + 3y = 8
4x - y = 2

The matrix form is:
 

\(\[ \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix} \] \)

 

The matrix equation is AX=B
For a general system of n equations:
a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2n + xn = b2
.
.
.
an1x1 + an2x2 + . . . + annxn = bn
The matrix equation AX = B, where,
A = coefficient matrix =aij
X = variable matrix = [x1 , x2,. . ., xnT]
B = Constant matrix =]b1, b2, . . ., bnT]

Professor Greenline from BrightChamps

How to Write Matrix Equations?

Let us take an example to understand how to write a matrix equation:

Consider the system: 
2x+3y-z=5
-x+4y+2z=6
3x-y+z=-2

Step 1: Check the order of variables to ensure all equations have the same order.
Here, all equations are of the order x, y, z.

Step 2: Make sure all the equations have variables on the left and constants on the right.

Step 3: Identify the coefficient matrix A, the variable matrix X, and the constant matrix B.

Here, 
Coefficient matrix A:

 

\(\[ A = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 4 & 2 \\ 3 & -1 & 1 \end{bmatrix} \] \)

Variable matrix X:

\(\[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]\)

Constant matrix B:

\(\[ B = \begin{bmatrix} 5 \\ 6 \\ -2 \end{bmatrix} \]\)

Step 4: Write in the form of a matrix equation AX = B

\(\[ AX = B \quad \Rightarrow \quad \begin{bmatrix} 2 & 3 & -1 \\ -1 & 4 & 2 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ -2 \end{bmatrix} \]\)

Professor Greenline from BrightChamps

How to Solve Matrix Equations?

To solve a matrix equation of the form AX = B:
We multiply both sides by the inverse of A

A-1(AX) = A-1B

Then, we use the identity matrix property
A-1A = I (where I is the identity matrix)

So, IX = A-1B

Using the identity matrix rule, we know that IX = X
So, X = A-1B

This is the inverse matrix equation.
Let us solve an example using the inverse matrix method.

Question: Solve the following system of equations.

2x + 3y = 8
4x + y = 10

Writing as a matrix equation AX = B, where
 

\(\[ A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} 8 \\ 10 \end{bmatrix} \] \)

 

Now, we find the inverse A-1
Since A is a 2 × 2 matrix, we use the formula:
\( \[ A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]\)

 

Here, a = 2, b = 3, c = 4, d = 1
Determinant A= (2)(1)-(3)(4)=2-12= -10

So, the inverse is:

\( \[ A^{-1} = \frac{1}{-10} \begin{bmatrix} 1 & -3 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -0.1 & 0.3 \\ 0.4 & -0.2 \end{bmatrix} \] \)
Now using the inverse matrix equation:
\(X = A^{-1}B = \begin{bmatrix} -0.1 & 0.3 \\ 0.4 & -0.2 \end{bmatrix} \begin{bmatrix} 8 \\ 10 \end{bmatrix} \)

 

First row: (-0.1)(8)+(0.3)(10)= -0.8 + 3 = 2.2
Second row:  (0.4)(8)+(0.3)(10)=3.2-2=1.2
So,
\(X = \begin{bmatrix} 2.2 \\ 1.2 \end{bmatrix} \)

X = 2.2 and y = 1.2
 

Professor Greenline from BrightChamps

Consistency of Solution of Matrix Equation

We can find the inverse of a matrix only when it is nonsingular, i.e., its determinant is not zero. The inverse A-1 only exists when det(A)  0. In such a case, the solution of the matrix equation AX = B is X = A-1B.
If det(A) = 0, we need to find adj(A)  B. Here, adj(A) is the adjoint of matrix A:
If adj(A)  B  0, then the system is inconsistent, meaning there is no solution to the equation AX = B.

 

If the product of adj(A)  B = 0, the system is either consistent with infinitely many solutions or is inconsistent.

Max Pointing Out Common Math Mistakes

Common Mistakes and How to Avoid Them in Matrix Equation

From confusing orders of multiplication to misapplication of the inverse concept, there are many mistakes one could make while dealing with matrix equations. Here are some common mistakes that students should know and avoid while working with matrix equations:

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Assuming matrix multiplication is commutative
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students may think that if AB = C, then BA = C. Matrix multiplication is not commutative, so in general, AB  BA. Always check the order of multiplication. 

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Ignoring dimensions before multiplying
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Matrix multiplication is only possible if the number of columns in the first matrix is equal to the number of rows in the second matrix. Not all pairs of matrices can be multiplied. So always write down dimensions before attempting multiplication.

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Using a Matrix for division
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

There is no such thing as matrix division. Instead, you must multiply by the inverse, if it exists.

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not checking for the inverse of a matrix
 

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Do not assume that every square matrix has an inverse. Only non-singular square matrices or matrices with a non-zero determinant are invertible.
 

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Solving non-square systems using the inverse

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

 A matrix must be square and invertible to have an inverse; for non-square systems, use the least squares method, row reduction method.

arrow-right
arrow-right
Professor Greenline from BrightChamps

Real-life Applications of Matrix Equation


Matrix equations simplify solving large systems of equations and allow matrix operations and techniques, including inverse, row reduction, and determinants. They are widely used in:

  • Product pricing and production planning in business: Solving a matrix equation helps determine the number of units that can be produced under specific resource constraints.

 

  • Rotating an image in Photoshop: Software programs use transformation matrices to rotate a photo perpendicularly. The matrix equation helps render the image correctly on screen.

 

  • Solving electric circuits in engineering: Kirchhoff’s law is used for electrical circuits with 3 loops, and 3 equations are formed based on voltage and current. The matrix equation gives the current in each branch of the circuit accurately.

 

  • Economics: The Leontief input-output model uses matrix equations to understand how much production India’s major economic sectors like agriculture and manufacturing need to meet the national demand.

 

  • Robotics: Solving a matrix equation helps determine exact angles at which robotic movements occur efficiently.
Ray Thinking Deeply About Math Problems

FAQs on Matrix Equation

1.How to solve matrix equation AX = B?

You can solve the matrix equation AX = B by finding the inverse A-1 using the formula A-1 = adj(A)/det(A) and finding the solution using X = A-1B.
 

Math FAQ Answers Dropdown Arrow

2.How many solutions does a matrix equation have?

 If det(A) = 0 and (adj A)B ≠ 0, the system is inconsistent, i.e., it has no solution.
If det(A) = 0 and (adj A)B = 0, the system is consistent, i.e., it has infinite solutions.
If det(A) ≠ 0, the system has a unique solution.
 

Math FAQ Answers Dropdown Arrow

3. What role does the identity matrix play in matrix equations?

The identity matrix I acts like the number 1 in matrix multiplication. When solving AX = B, multiplying both sides by A⁻¹ gives:
A⁻¹AX = A⁻¹B ⇒ IX = A⁻¹B ⇒ X = A⁻¹B
Here, IX = X, showing that the identity matrix does not change the solution vector

Math FAQ Answers Dropdown Arrow

4.Can all systems of equations be written as matrix equations?

Yes, any system of linear equations can be written as AX = B, where A is the coefficient matrix, X is the variable vector, and B is the constant vector.

Math FAQ Answers Dropdown Arrow

5.List the methods used for solving a matrix equation

List of methods used for solving a matrix equation are:
Inverse matrix method: used when matrix A is square and invertible.

  • Gaussian Elimination/row reduction method: used when A is not necessarily invertible or square.
  • Cramer’s Rule: used when A is a square matrix, and det(A)  0
  • LU Decomposition; used when A is square and decomposable into lower and upper triangular matrices.
  • Rank method/consistency check: used for determining whether the system has a unique solution, no solutions or infinite solutions.
     

Math FAQ Answers Dropdown Arrow
Math Teacher Background Image
Math Teacher Image

Jaskaran Singh Saluja

About the Author

Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.

Max, the Girl Character from BrightChamps

Fun Fact

: He loves to play the quiz with kids through algebra to make kids love it.

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom